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There seems to be a puzzle

(a) Inception on ImageNet (b) Inception on CIFAR10

Figure 2: Effects of implicit regularizers on generalization performance. aug is data augmentation,
wd is weight decay, BN is batch normalization. The shaded areas are the cumulative best test ac-
curacy, as an indicator of potential performance gain of early stopping. (a) early stopping could
potentially improve generalization when other regularizers are absent. (b) early stopping is not nec-
essarily helpful on CIFAR10, but batch normalization stablize the training process and improves
generalization.

performance, but even with all of the regularizers turned off, all of the models still generalize very
well.

Table 2 in the appendix shows a similar experiment on the ImageNet dataset. A 18% top-1 accuracy
drop is observed when we turn off all the regularizers. Specifically, the top-1 accuracy without
regularization is 59.80%, while random guessing only achieves 0.1% top-1 accuracy on ImageNet.
More strikingly, with data-augmentation on but other explicit regularizers off, Inception is able to
achieve a top-1 accuracy of 72.95%. Indeed, it seems like the ability to augment the data using
known symmetries is significantly more powerful than just tuning weight decay or preventing low
training error.

Inception achieves 80.38% top-5 accuracy without regularization, while the reported number of
the winner of ILSVRC 2012 (Krizhevsky et al., 2012) achieved 83.6%. So while regularization is
important, bigger gains can be achieved by simply changing the model architecture. It is difficult
to say that the regularizers count as a fundamental phase change in the generalization capability of
deep nets.

3.1 IMPLICIT REGULARIZATIONS

Early stopping was shown to implicitly regularize on some convex learning problems (Yao et al.,
2007; Lin et al., 2016). In Table 2 in the appendix, we show in parentheses the best test accuracy
along the training process. It confirms that early stopping could potentially

1 improve the general-
ization performance. Figure 2a shows the training and testing accuracy on ImageNet. The shaded
area indicate the accumulative best test accuracy, as a reference of potential performance gain for
early stopping. However, on the CIFAR10 dataset, we do not observe any potential benefit of early
stopping.

Batch normalization (Ioffe & Szegedy, 2015) is an operator that normalizes the layer responses
within each mini-batch. It has been widely adopted in many modern neural network architectures
such as Inception (Szegedy et al., 2016) and Residual Networks (He et al., 2016). Although not
explicitly designed for regularization, batch normalization is usually found to improve the general-
ization performance. The Inception architecture uses a lot of batch normalization layers. To test the
impact of batch normalization, we create a “Inception w/o BatchNorm” architecture that is exactly
the same as Inception in Figure 3, except with all the batch normalization layers removed. Figure 2b

1We say “potentially” because to make this statement rigorous, we need to have another isolated test set and
test the performance there when we choose early stopping point on the first test set (acting like a validation set).
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Optimization for machine learning

Training error

min
w∈Rp

1
n

n∑
i=1

`(fw(xi),yi) + λ‖w‖2

Gradient methods

ŵt+1 = ŵt − γt
1
n

n∑
i=1

∇`(fŵt
(xi),yi) − 2γtλŵt

lim
t→∞ 1

n

n∑
i=1

`(fŵt
(xi),yi) + λ‖ŵt‖2 = min

w∈Rp

1
n

n∑
i=1

`(fw(xi),yi) + λ‖w‖2

=⇒ Go faster! …but where?
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Statistical machine learning

1
n

n∑
i=1

`(fw(xi),yi) ≈ Ex,y[`(fw(x),y)]

Test error
Ex,y[`(fŵt

>(x),y)]
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Error measures

Generalization error

1
n

n∑
i=1

`(fŵt
(xi),yi) − Ex,y[`(fŵt

(x),y)]

Excess risk
Ex,y[`(fŵt

(x),y)] − min
w∈Rp

Ex,y[`(fw(x),y)]
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Regularization for learning

Tikonov regularization+ learning/inverse problems

I Smale, Zhou, ’05, Caponnetto, De Vito and R. Verri, Gyorfi et al. ’04, Cucker Zhou ’07.

Other regularization methods

I GD [Yao, R. Caponnetto ’05, Raskutti Wainwright Yu’13, Lin, R. ’15 …]
I SGD [Rosasco Villa ’15, Dieuleveut, Bach ’16 …]
I Regularization with projections [Rahmii Racht ’06, Rudi, R. 15]
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Least squares learning

Solve
min
w∈Rp

Ex,y[(w
>Φ(x) − y)2]

where Φ(x) ∈ Rp and p can be infinite.

Gradient descent1

ŵt+1 = ŵt − α∇L̂(ŵt), ∇L̂(w) =
2
n

n∑
i=1

Φ(xi)(w
>Φ(xi) − yi)

with
α =

1
supx ‖Φ(x)‖2 .

1(x1,y1), . . . , (xn,yn) iid. 9



Accelerated iterations

Heavy-ball
ŵt+1 = ŵt − αt∇L̂(ŵt) + βt(ŵt − ŵt−1).

In particular2 for ν > 0

αt =
1

supx ‖Φ(x)‖2
4(2t+ 2ν− 1)(t+ ν− 1)
(t+ 2ν− 1)(2t+ 4ν− 1) , βt =

(t− 1)(2t− 3)(2t+ 2ν− 1)
(t+ 2ν− 1)(2t+ 4ν− 1)(2t+ 2ν− 3) .

Nesterov’s acceleration

ŵt+1 = v̂t − α∇L̂(v̂t), v̂t = ŵt + βt (ŵt − ŵt−1) .

In particular for β > 1
α =

1
supx ‖Φ(x)‖2 , βt =

t− 1
t+ β

.

2Called ν method in inverse problems. Reduces to Chebyshev iterative method for ν = 1/2. 10
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Basic result

Let
L(w) = Ex,y[(w

>x− y)2], L(w∗) = min
w∈Rp

L(w)

Theorem
Assume ‖Φ(x)‖, |y| 6 1 a.s.. Then w.h.p.

L(ŵt) − L(w∗) .
1
t
+

t

n

for GD, whereas

L(ŵt) − L(w∗) .
1
t2 +

t2

n

for Heavy-ball and Nesterov acc.
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Basic result (cont.)

Corollary
For GD, if t =

√
n,

L(ŵt) − L(w∗) .
1√
n

.

The same bound hold for for Heavy-ball and Nesterov acc. for t = n1/4.
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Numerical illustration

Parameters of the plot in the left: space size N = 104, training points n = 102, γ = 1,
noise σ = 0.5, step-size α � 0.9/max(eigs(K̂)) 6 1

supx ‖Φ(x)‖2 .

Figure: Simulated data (ill-conditioned LS) Figure: Pumadyn8nh dataset (n = 8192,d = 7),
Gaussian kernel width1.2.
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Remarks

I Early stop after
√
n iteration! Iterations control complexity/stability.

I Acceleration can suffer from instability.

I Iterates converge to minimal norm minimizer (implicit bias).

I Training error/generalization play no role.

I Proof based on spectral filtering/calculus [Engl et al. ’96, Neubauer ’16]
+ concentration inequalities [Pinelis, Sakhanenko ’86]

We can see other behaviors in practice: explanation?
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Do we like assumptions or not?

I ”Simple and Almost Assumption-Free Out-of-Sample Bound for ...”

I ”…a more ambitious open problem ( to find good bounds) is to find the correct
characterization of “easiness” for real-world problem…”

We can see other behaviors in practice: explanation?
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Refined assumption: easy problems

Σ = Ex[Φ(x)Φ(x)>] h = Ex,y[Φ(x)y]

Optimality condition

L(w∗) = min
w∈Rp

Ex,y[(w
>Φ(x) − y)2] ⇔ Σw∗ = h.

Error/source condition

w∗ ∈ Range(Σs), s ∈ [0,∞)
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Easy problems illustrated

w⇤

Range(⌃)
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Refined results

Theorem
Under the error/source condition, assume ‖Φ(x)‖, |y| 6 1 a.s.. Then w.h.p.

L(ŵt) − L(w∗) .
1

t2s+1 +
t

n

with s ∈ [0,∞) for GD, whereas

L(ŵt) − L(w∗) .
1

t2(2s+1) +
t2

n

with s ∈ [0,ν) for Heavy-ball and with s = 0 for Nesterov acc.
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Refined results (cont.)

Corollary
For GD with s ∈ [0,∞), choosing t = n

1
2s+2 ,

L(ŵt) − L(w∗) .
1

n
2s+1
2s+2

.

The same bound hold for Heavy-ball with s ∈ [0.ν) and for Nesterov acc. with s = 0
choosing t =

√
n

1
(2s+2) .

Acceleration can suffer from slow rates for easy problems.
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Numerical illustration

Parameters: space size N = 104, training points n = 102, γ = 1, noise σ = 0.2, step-size
α = 0.9/max(eigs(K̂)) 6 1

supx ‖Φ(x)‖2 .

Figure: s = 0 Figure: s = 3/2
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Numerical illustration

Parameters: space size N = 104, training points n = 102, γ = 1, noise σ = 0.5, step-size
α = 0.9/max(eigs(K̂)) 6 1

supx ‖Φ(x)‖2 .

Figure: s = 0 Figure: s = 50
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So far

I Large function class/simple target function: instability and slow rate?

Gradient descent might catch up.

I What about small function class/complex target function?
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Refined assumption: hard problems

Let
Σf(x) = Ex[Φ(x)f(x)]

General source condition

E[y|x] ∈ Range(log(Σ)).

Eigendecay

σj(Σ) ∼ e−j.

Example: Learn a smooth (Sobolev) function with a Gaussian kernel (fixed width!).
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Hard problems illustrated

w⇤

Range(⌃)
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Refined results

Theorem
Under the error/source condition, assume ‖Φ(x)‖, |y| 6 1 a.s.. Then w.h.p.

L(ŵt) − L(w∗) .
1

log(t) +
log(t)
n

+
t

n2

with for GD, whereas for

L(ŵt) − L(w∗) .
1

2 log(t) +
2 log(t)

n
+

t2

n2

for Heavy-ball and for Nesterov acc.
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Refined results (cont.)

Corollary
For GD choosing t ∼ nα, α < 2

L(ŵt) − L(w∗) .
1

log(n) .

The same bound hold for Heavy-ball and for Nesterov acc. with t ∼
√
nα, α < 2.
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Numerical illustration

Parameters: space size N = 104, training points n = 102, γ = 1, source condition
logarithmic, noise σ = 0.2, step-size α = 0.9/max(eigs(K̂)) 6 1

supx ‖Φ(x)‖2 .

Figure: Simulation of the test error in the case
σi ≈ e−γi

Figure: Simulation of the test error in the case
σi ≈ e−γi (zoom)
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ML Science

The behavior of an algorithms depending on modeling assumptions.

Which assumptions are good depends on data.

Looking at different assumptions allows to explaning different empirical behaviors.
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Wrapping up

I Optimization for machine leads to new algorithms: implicit regularization.
I Different behaviors depending on easy/hard learning problems.
I TBD: high/low dimension and SNR, classification; nonlinear parameterization…

n � ed ⇒ L(ŵt) − L(w∗) .
1

log(t) +
log(t)
n

+ ���
const.

t

n2 ?

New machine learning center in Genova: PhD positions available!
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Outline

Spectral filtering & concentration inequalities
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Spectral filtering for GD

Σ̂ =
1
n

n∑
i=1

Φ(xi)Φ(xi)
>, ĥ =

1
n

n∑
i=1

Φ(xi)yi

GD Filter

ŵt+1 = ŵt − α∇L̂(ŵt) = α

t∑
j=0

(I− αΣ̂)jĥ

For t large,

gt(Σ̂) = α

t∑
j=0

(I− αΣ̂)j ≈ Σ̂−1

32



Spectral filtering for accelerated methods

gt(Σ̂) = α

t∑
j=0

(I− αΣ̂)j

For accelerated methods
gt(Σ̂) = pt(Σ̂)

with pt suitable polynomials [Engl et al. ’96, Neubauer ’16].
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Spectral filters

Definition
{gλ}λ∈(0,1] is a spectral filtering function if there exists E, F0,q, (Fs)qs=0 < ∞ s.t., for any
λ ∈ (0, 1]

(i)

sup
σ∈(0,κ2]

|gλ(σ)| 6
E

λ
.

(ii) Let rλ(σ) = 1 − σgλ(σ), for s ∈ [0,q)

sup
σ∈(0,κ2]

|rλ(σ)σ
s| 6 Fsλ

s .

The parameter q is called qualification.
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Probabilistic inequalities

Need to control
‖rλ(Σ̂) − rλ(Σ)‖

or
Σgλ(Σ̂)

via probabilistic inequalities,
P
(
‖Σ̂− Σ‖) 6 ε

)
P
(
‖(Σ̂+ λI)−1(Σ+ λI)‖

)
6 ε)
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