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Motivation

Inverse problem in imaging
y = D(HXx)

where y € R™ observed image, D degradation model, H € R™* " linear observation model, X € R" original image
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Motivation

Inverse problem in imaging
y = D(HXx)

where y € R™ observed image, D degradation model, H € R™* " linear observation model, X € R" original image

Variational methods

minimize  f(Hx,y) + AR(x)
xeC

where f : R™ x R™ — R data-fitting term, R : R” — R regularization function, XA > 0 regularization weight
v Incorporate prior knowledge about solution and enforce desirable constraints
X No closed-form solution — advanced algorithms

X Estimation of X and tuning of algorithm parameters — time-consuming
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Motivation

Inverse problem in imaging
y = D(HXx)

where y € R™ observed image, D degradation model, H € R™*" linear observation model, X € R" original image

Variational methods

minimize  f(Hx,y) + AR(x)
xeC

where f : R™ x R™ — R data-fitting term, R : R” — R regularization function, A > 0 regularization weight
v Incorporate prior knowledge about solution and enforce desirable constraints
X No closed-form solution — advanced algorithms

X Estimation of X and tuning of algorithm parameters — time-consuming

Deep-learning methods
v/ Generic and very efficient architectures
X Pre-processing step : solve optimization problem — estimate regularization parameter

X Black-box, no theoretical guarantees
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Motivation

Inverse problem in imaging
y = D(HXx)

where y € R™ observed image, D degradation model, H € R™*" linear observation model, X € R" original image

Variational methods

minimize  f(Hx, y) + AR(x)
xeC

where f : R™ x R™ — R data-fitting term, R : R” — R regularization function, A > 0 regularization weight
v Incorporate prior knowledge about solution and enforce desirable constraints
X No closed-form solution — advanced algorithms

X Estimation of X and tuning of algorithm parameters — time-consuming

Deep-learning methods

v/ Generic and very efficient architectures
X Pre-processing step : solve optimization problem — estimate regularization parameter

X Black-box, no theoretical guarantees

— Combine benefits of both approaches : unfold proximal interior point algorithm

s e D O
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Deep Unfolding

e Examples

e Sparse coding : FISTA [Gregor and LeCun, 2010], ISTA [Kamilov and Mansour, 2016]
e Compressive sensing : ISTA [Zhang and Ghanem, 2018], ADMM [Sun et al., 2016]

e Principle

Iterative solver
for k=0,1,...

Xkr1 = A(xk, 0k) =

hyperparameters

Estimate : x* = lim xj
k— o0

Unfolded algorithm

for k=0,1,..., K—1
0)
X1 = A (Xk, Eﬁ (Xk)>
layer estimating hyperparameters

Estimate : x* = xi

® Operators and functions included in A can be learned

v/ Gradient backpropagation and training are simpler

X Link to the original algorithm is weakened

Corbineau et al.
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Notation and Assumptions

Let [o(R") be the set of proper Isc convex functions from R” to R U {+occ}. The proximal
operator [nttp://proximity-operator.net/] of g € [o(IR") at x € R” is uniquely defined as

1
prox,(x) = argmin (g(z) + §||z - x||2> .

zERM

Assumptions

Po : minimize f(Hx,y) + AR(x)
xeC

We assume that f(-,y) and R are twice-differentiable, f(H-, y) + AR € [o(R") is either coercive
or C is bounded. The feasible set is defined as

C={xeR"|(Vie{l,...,p}) c(x)>0}
where (Vi € {1,...,p}), —¢; € [o(R"). The strict interior of the feasible set is nonempty.
m Existence of a solution to Py
m Twice-differentiability : training using gradient descent
B : logarithmic barrier
4 . .
(vx € R") B(x Z In(ci(x)) if x € intC
400 otherwise.

T e D )



Logarithmic barrier method

Constrained Problem Po : miningize f(Hx,y) + AR(x)
x€

Corbineau et al.
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Logarithmic barrier m

Constrained Problem Po : miningize f(Hx,y) + AR(x)
x€

U

Unconstrained Subproblem Pu: minig{ﬁze f(Hx,y) + AR(x) + uB(x)
xER"?

where 1 > 0 is the barrier parameter.

Po is replaced by a sequence of subproblems ('PM )jen-
m Subproblems solved approximately for a sequence p; — 0
m Main advantages : feasible iterates, superlinear convergence for NLP

X Inversion of an n X n matrix at each step

s e 5
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Proximal interior point strategy

— Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

LetxoeintC,1>O, (VkGN)zg'yk and pux — 0;
for k=0,1,... do

Xk4+1 = PIOXy, (f(H-,y)+ AR+, B) (xk)
end for

X No closed-form solution for PTOX, (F(H-,y)+ AR +1uxB)

s e G
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Proximal interior point strategy

— Combine interior point method with proximity operator

Exact version of the proximal IPM in [Kaplan and Tichatschke, 1998].

LetxoeintC,1>O, (VkGN)zg'yk and pux — 0;
for k=0,1,... do

Xk4+1 = PIOXy, (f(H-,y)+ AR+, B) (xk)
end for

X No closed-form solution for PTOX, (F(H-,y)+ AR +1uxB)

Proposed forward—backward proximal IPM.

Let xo € intC, v > 0, (VkGN)ngyk and px — 0;
for k=0,1,... do

Xk+1 = ProX., . 5 (xk — Yk (HTV1 f(Hxk,y) + )\V'R(xk)))
end for

v/ Only requires ProX,, ., 3

s e G
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Proximity operator of the barrier

Let ¢ : (x, @) — prox,z(x).

A neural network obtained by unfolding an iterative solver A
o requires to compute A(x, 9).
— expression for the proximity operator ¢(x, a)?

Corbineau et al.

19 7/35




Introduction  Proximal IP method  Proximity operator of the barrier ~ Propose: ecture  Net stability ~ Numerical experiments  Con

Proximity operator of the barrier

Let ¢ : (x, @) — prox,z(x).

A neural network obtained by unfolding an iterative solver A
o requires to compute A(x, 9).
— expression for the proximity operator ¢(x, a)?

e is trained with loss function ¢(xx,X) by gradient descent.

O = £(k")(Xk)
Xkr1 = A (xx, 0k)

(6)

— first derivatives of £ wrt learnable parameters of hidden layers (,Ck )
0<k<K—1

— the chain rule requires the derivative of A wrt x and 6

— expressions for Ji,x)(x,a) and V(;‘)(x,a) ?

T e 7
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Proximity operator of the barrier

Let

¢+ (x,0) = prox,p(x).

A neural network obtained by unfolding an iterative solver A

requires to compute A(x, 6).
— expression for the proximity operator ¢(x, a)?

is trained with loss function ¢(xx,X) by gradient descent.

O = £(k")(Xk)
Xkr1 = A (xx, 0k)

(6)

— first derivatives of £ wrt learnable parameters of hidden layers (,Ck )
0<k<K—1

— the chain rule requires the derivative of A wrt x and 6

— expressions for J (x «) and V (x a)?

These quantities depend on BB and on the feasible set.
= We obtain their expressions for three types of constraints.

T e 7
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Proximity operator of the barrier

Affine constraints C= {x ER"|a'x< b}

Let @ : (x, ) = prox,pz(x). Then, for every (x,a) € R” x R%,

- b—a'x—/(b—aTx)?+4alal?
p(x,a) =x+ a.
2||a|?

In addition, the Jacobian matrix of ¢ wrt x and the gradient of ¢ wrt « are given by

1 Tx—b
SO a) =T — —— [ 1+ ax aa’
2|all (b—aTx) + 4ala|?
and 1
Vg’)(x, o) = a

(b—a'x)? + 4alal?

Proof : [Chaux et al.,2007] and [Bauschke and Combettes,2017]

s e D O
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Proximity operator of the barrier

Hyperslab constraints C= {x ER" | bp<alx< bM}

Let ¢ : (x, @) > prox,pz(x). Then, for every (x,a) € R” x RY,

r(x,) —a' x
p(x,a) = x + ——————a,
llall?
where x(x, a) is the unique solution in [bm, by, of the following cubic equation,
0=2"—(bn+bu+a' x)z°+(bmbm+a ' x(bm+bu)—2cl||al|*)z—bmbya' x+o(bm+bu)lal®.
In addition, the Jacobian matrix of ¢ wrt x and the gradient of ¢ wrt o are given by

1 ((bm — K(x, 0))(bm — K(x, ) 1) aa’
( )

llal? n(x, @)

IO (%, 0) =1 —
and
2k(x, ) — by — by
n(x, )
where n(x, a) = (by — £(x, @))(bm — K(x, @)) = (bm + by — 2k (x, @))(r(x, @) — a T x) — 2c]|a]|?.

)

() _
Vel (x, @) =

Proof : [Chaux et al.,2007], [Bauschke and Combettes,2017] and implicit function theorem

s e O
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Proximity operator of the barrier

Bound constraints C={xeR|0<x<1}
L [—yp =1.5e-04
——p =9.5e-04
0.8 yp =6.0e-03
T | —yp =3.8¢-02
— ——yp =2.4e-01
i;: 0.6 F|——yu =1.5e+00
*{‘
804
&
0.2
0 L L L Il
-0.5 0 0.5 1 1.5
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Network stability ~ Numerical experiments

Conclusion

Proximity operator of the barrier
Bounded #-norm C= {x ER" | [x—¢|? < p}

Proposition 3

Let @ : (x, ) = prox,p(x). Then, for every (x,a) € R” x R%,

p — K(x, a)? ( 0
———(x—c¢),
p — k(x, a)? + 2«

where k(x, @) is the unique solution in ]0, \/pl[, of the following cubic equation,

p(x,a) =c+

0= 2~ [lx — €]l = (p +20)z + pllx — ]|

In addition, the Jacobian matrix of ¢ wrt x and the gradient of ¢ wrt « are given by

(x) _ p—llelx, @) = ?
e o) = ot ) — a2 M)
and >
() _ — _
Vol(x,a)= e o) —cF 20 M(x, a)(¢(x, @) — ¢),
where -+
M(x, o) = I, 2(x — p(x, &) (p(x, @) — €)

~ p—3lle(x,a) — ¢l + 20+ 2(p(x,a) — )T (x —¢)’

Proof : [Bauschke and Combettes,2017], Sherma-Morrison lemma and implicit function theorem

T I e WS
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Proximity operator of the barrier

Introduction  Proximal IP method

Proximity operator of the barrier

Bounded #¢>-norm C= {x ER? | |x|? < 0.7}

B i =1.5e-04
Py =9.5e-04

0.5

Y =1.5e+00

(proxﬂ,,,,g(w)) 1

-0.5

-1 \‘\1\7_/—’,?—/|
2 0 9
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Introduction  Proximal IP method

Proposed strategy

Forward—backward proximal IPM.
Let xo € intC, v > 0, (Vk € N) v <7y and p — 0;
for k=0,1,... do
Xir1 = Prox., 5 (X — v (HT Vif (Hxi, y) + AVR(x)) )

end for

v/ Efficient algorithm for constrained optimization

X Setting of the parameters (uk, Yk )ken ?
X Finding the regularization parameter A so as to optimize the visual quality of the
solution 7

— Unfold proximal IP algorithm over K iterations, untie , ;£ and A across network

AQx, i Yoo M) = Proxo, i (6 = (HT Vi (Hxio y) + M VR (%)) )

s Iem W EE
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iRestNet architecture

Input £y LN ) 4N Output
RGB image RGB image
A A
55)/1) 0, A £(1/1) [EQ SN A r
pp
0 1
£((]u) Ho X1 g(lﬂ) M X2 XK —
. -~ J . — J
X0 =Yy
ﬁ() El

Input : xo = y blurred image
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iRestNet architecture

Input T £y I Output
RGB image RGB image
W Ao » A
Ly A £ A C
w
Lf}‘l) Ho X [:(1#) M1 X2 XK
g
C . SN . g
Xo =y
Loy Ly

Input : xg = y blurred image

Hidden structures
u (EY))OSI(SK—I : estimate stepsize, positive — Softplus (smooth approx RelLU)

Yk = £5(7) = Softplus(ak)

2019 14 / 35
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Input L{,” lro_,| £? n | Output
RGB image RGB image
X\ A A
£ =g £ g %
3
£y Ho X £ H X2, xk
N N SN N g’
xo=
0=Y 2o 2
Input : xo = y blurred image
Hidden structures
m( X Jo<k<k—1 : estimate stepsize
u (EE(“))0<I<<K71 : estimate barrier parameter
3
16x16 16x16
L
>
"~ SoftPlus
AvgPool 4x4 AVEPOOLAXE e layer

+ SoftPlus

+ SoftPlus

Corbineau et al.
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iRestNet architecture

Input cp s £r I Output
RGB lmage RGB image
£ Ao W At " . N
£ L(“) Ho C(lm M X2 XK " [ U
Xp = N ’
LU Ly

Input : xo = y blurred image
Hidden structures
u (£ )0<k<K 1 : estimate stepsize
u (Ek“))OSkSK—l : estimate barrier parameter

u (£5(’\))0§k§;<,1 : estimate regularization parameter — image statistics, noise level

Corbineau et al.
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iRestNet architecture

1] 4

Input LW) g(lV) EANEN Output
RGB image RGB image
£ Ao £ A A .
‘E £$ Ho Xi E £ Ll} X2 XK,
. )
o=y Cu Ly

Input : xo = y blurred image
Hidden structures
u (»CE(’Y))OSkSK—l : estimate stepsize
= (LE(M))OSkSKfl : estimate barrier parameter
u (Eik))ogkg;(_l : estimate regularization parameter

m A(Xks ke, Yhs Ak) = PTOXy, 1,18 (Xk = Yk (HTvlf(HXk,Y) + M VR(x)))

Corbineau et al.
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Input T £y I Output
RGB image RGB image
X 4o AL
£ e 4
1
Ly
8 Ho X1 £» A1 X2 XK
S - )
X0 =
Cg Ly

Input : xg = y blurred image
Hidden structures

u (E )o<k<K 1 : estimate stepsize

(L'k“ Jo<k<k—1 : estimate barrier parameter

(ﬁik))ogkgK—l : estimate regularization parameter

A(Xks ks Vks Ak) = Prox., ,, n (Xk — Yk (HTVJ(HXka,V) + /\kVR(Xk)))

m Lpp @ post-processing layer — e.g. removes small artifacts

e T
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Input T £y Output
RGB image RGB image
W Ao W A N
Ly A Ly A C N
723
£ Ho X P A X2 XK
SR )
- -

Loy Ly

Input : xg = y blurred image
Hidden structures
u (Efj))ogkqu : estimate stepsize
u (Li“))ongK,l : estimate barrier parameter
u (»CE:\))nggK—l : estimate regularization parameter

m A(Xks fks Yhs Ak) = ProX., .. 5 (xk — Yk (HTvlf(ka.y) + /\kVR(xk)>)
m Lpp 1 post-processing layer — e.g. removes small artifacts

Training Gradient descent and backpropagation (V.4 with Propositions 1-3)

e T
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Network stability

What about the network performance when the input is perturbed ?

Corbineau et al.
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Network stability

What about the network performance when the input is perturbed ?

m Applications with high risk and legal responsibility (medical image processing, defense,
etc...) — need guarantees

m Deep learning : lack of theoretical guarantees, e.g. AlexNet [Szegedy et al., 2013]

Original image Perturbation New input

v/ Correctly classified X Categorized as ‘Ostrich’

FIGURE — Adversarial examples for AlexNet [Szegedy et al., 2013]

Corbineau et al.
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Network stability

Formulation
e Neural network : T(:) : R" — R”"
e Input image : x € R”
e Perturbation : x € R”
o Output perturbation : AT (x) = T(x 4+ dx) — T(x)
e Questions : [[AT(x)||? AT(x)?

Corbineau et al.
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Network stability

Formulation
e Neural network : T(:) : R" — R”"
e Input image : x € R”
e Perturbation : x € R”
o Output perturbation : AT (x) = T(x 4+ dx) — T(x)
e Questions : [[AT(x)||? AT(x)?

Tools
Framework of averaged operators
iRestNet is re-written as a generic feedforward neural network
Results from the following recent work :

@ P. L. Combettes and J.-C. Pesquet.
Deep neural network structures solving variational inequalities
https://arziv.org/abs/1808.07526.

Corbineau et al.
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Nonexpansive operators

Let T : R" — R". Then, T is nonexpansive if it is 1-Lipschitz continuous, i.e.,

(vx e R")(Vy € R") || T(x) = Tyl < lIx = yll-

—> Bound on the norm of the output variation when input is perturbed :

AT < [lox]|

e Iem W TS
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Averaged operators

Let T : R” — R" be nonexpansive, and let a € [0,1]. Then, T is a-averaged if there
exists a nonexpansive operator R : R” — R” such that T = (1 — a)/n + aR.

e T

019 18 / 35



Introduction oximal IP method  Proximity operator o rrier  Proposed architecture  Network stability =~ Numerica

Averaged operators

Let T : R” — R" be nonexpansive, and let a € [0,1]. Then, T is a-averaged if there
exists a nonexpansive operator R : R” — R” such that T = (1 — a)/n + aR.

m If T is averaged, then it is nonexpansive.

m Let o €]0,1]. T is a-averaged if and only if for every x € R" and y € R”,

l-«a
ITG) = TWIP < llx—yl> = —5 MU = T)(x) = (I = NI
= Bound on the output variation when input is perturbed :

IAT(x)I? < [[6x]]? — 252 | AT (x) — 6x||2

e In particular, as dx — 0, AT(x) — dx.
e As a — 1 : nonexpansive.

e The smaller « is, the more stable T is.

e Iem W WS
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Relation to generic deep neural networks

Feedforward architecture

T =Rk_10(Wk_1-+bk_1)o---0Rgo(Wp-+bo)

® (Rk)o<k<k—1 nonlinear activation functions
= (Wi)o<k<k—1 linear operators (weight)

m (by)o<k<k—1 vectors (bias parameters)

Corbineau et al.
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Relation to generic deep neural networks

Standard activation functions can be expressed as proximity operators

= Rectified linear unit (ReLU)

g, if £>0;
0, if £<0.

Q:R—)R:{n—){

Then, o = Proj[o, +oo[-

= Parametric rectified linear unit (LeakyRelLU)

& ifE>0;
R —R: 1].
0:R— EH{Q& i e<0’ a €]0,1] HEH-
Then ¢ = proxy where EEEERRAN !
0, if £>0; .
R —>R:
o: R = 5H{UM—U§Q,H§§Q

T I=m W S
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Relation to generic deep neural networks

Standard activation functions can be expressed as proximity operators
m Unimodal sigmoid

1 1
0:R—>R: & m — 5
Then ¢ = proxy where
(€+1/2)In(€ +1/2)+ "
1 . )
ben ] W2-OmMU2-9-S@ 1) i I <1/2 |
—1/4, if 1¢l=1/2;
~+00, if ¢ >1/2.
= Elliot activation function (SoftSign) :
0:R—>R: & 3 . .
L+ ¢ -

We have o = proxy, where

—tanhis)
= soltignt)

— . —lel - —le) -5, i ¢l <1
¢: R =] oo,+oo].§n—>{+oo, 2 i e > 1

T I=m W S
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Relation to generic deep neural networks

Standard activation functions can be expressed as proximity operators

= Softmax
N
RiRY = RY: (61<kan = | exp(&) [ ) exn(§) - u,
J=1 1<k<N
where u = (1,...,1)/N € RV,
Then R = prox,, where p = (- + u) + (- | u) and
¥: RV =] — 0o, +00]
N ¢ N
In f—k), if i<n €[0,1]Y and =1;
(€ )1cren ; <§k &~ (&)1<i<n €10,1] ;ik
+00, otherwise.

T I=m W S
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Relation to generic deep neural networks

Quadratic problem  minimize %HHX —yl?+ %||Dx||2
xeC

Feedforward architecture Rx_1 0 (Wk_1-+bk_1)0---0Ryo(Wp-+bo)

iRestNet Xk1 = prokaMkB(xk — v (HT (Hx, — y) + \D T Dxy))
= Prox,, ., s ([]In — % (HTH 4+ \DT D)]x + ’kaTy)
= R (Wiexi + by)

8 W, =1, — v (HTH+ ADT D) weight operator
m by = v H" y bias parameter

m Ry = prox,, ,, 5 = Ry specific activation function

T I WD B E
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Introduction  Proximal IP method  Proximity operator of the barrier

Averageness result

Let « € [1/2,1]. Let K > 1 be an integer. Let W = Wx_10---0 Wy, let
n= infxeR,u [Ix[|=1 (Wx | x), and let

Ok—1 = [|W]|

K—2
+E E Wk—10--0Wjlll[Wj, 00 Wj, - [[Wj oo Wl

£=0 0<jg<---<jp<K—2

If one of the following conditions is satisfied :

(i) There exists k € {0,..., K — 1} such that W, = 0;

(i) |W —2K(1 — &)L — W/ + 20k_1 < 2Ka;

(iii) a#1, for every k € {1,. — 1} Wi # 0, and there exists
n € [0,a/((1 — a)fk— 1)] such that

{aK,l < 2K-1qy
abk—1+ (1 — a)(In — nW|| — nl| W) (k-1 — [[W]]) < 2572 (2 — 1) + (1 — ),

then T = Rx_10(Wk_1-+bk_1)0---0Ryo(Wp-+hp) is a-averaged.

TN ETRE TSy
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Network stability result

Consider the quadratic problem, assume that HTH and D" D are diagonalizable in the same
basis P.
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Network stability result

Consider the quadratic problem, assume that H' H and D' D are diagonalizable in the same
basis P.

Notation

For every p € {1,...,n} let 5’3’) and ﬁg’) denote the p*® eigenvalue of H' H and DT D in P,
resp. Let S_ and . be defined by

B- :lggni]j: (1= (B2 + MBY))) and B, = max H (1= (B + 289 -

Let9_1=1and for every k € {0, ..., K — 1},

Z"' s max [(1= (B + 2B9)) . (1= (5gn+>\,ﬁgm))|.

1<q;<n

NS ETRE Ty
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Network ility result

T

Consider the quadratic problem, assume that H' H and D' D are diagonalizable in the same

basis P.
Notation
For every p € {1,...,n} let 523) and ﬁg’) denote the p*® eigenvalue of H' H and DT D in P,
resp. Let S_ and (B, be defined by
K—1 » » K—1
= [ _ P P _
g = min EO (1= (B +28g))) and By = max H (1= (B + 289 -
Let 6_1 =1and for every k € {0, ..., K — 1},

Z 9/ 1 mMax

1<q;<n

(=0 (37 3u8)) - (1= (459 25 |

Let « € [1/2,1]. If one of the following conditions is satisfied :
(i) By +B- <0and fk_1 <2K-1(2a — 1);
(i) 0 < By + B <2K+(1 — @) and 20K_; < By + B— +2K(2a — 1);
(i) 261(1 — @) < B4 + B— and Oy < 2K,
then the operator Rx_1 o (Wk_1 - +bkx_1)0:--0 Ryo (W - +by) is a-averaged.

s Iem D S
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Numerical experiments

Image deblurring y=Hx+w
m H € R" x R" : circular convolution with known blur
B w € R" : additive white Gaussian noise with standard deviation o
my € R", x € R" : RGB images

Variational formulation

1 "\ [(Dux)? + (Dyx)?
migiencﬁze §||Hx—y||2+)\z\/(hx)'6#+l
i=1

B C={xeR"| (Vie{l,...,n}) Xmin < xi < Xmax}
m § : smoothing parameter, § = 0.01 for iRestNet

m Dy, € R™" D, € R"™" : horizontal and vertical spatial gradient operators

T I=m W WS



Network characteristics

m Number of layers : K = 40

oy 2] ¢ Oupe
RGB mage
A N
N )
Lo
m
o

o=y
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Network characteristics

PRI Ouput
RGB image

A

m Number of layers : K = 40

m Estimation of regularization parameter x0=y

£ £,

(y) x Softplus(by)

A= LW (g) = DL TR
. K O) n(xx) + Softplus(ck)

o 7(xx) : standard deviation of [(Dnxx) " (Dyxk) "]

e Estimation of noise level [Ramadhan et al.,2017], ;(y) = median(|Wgy|)/0.6745

|Why| : vector gathering the absolute value of the diagonal coefficients of the first level
Haar wavelet decomposition of the blurred image

— iRestNet does not require knowledge of noise level

e T
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Network characteristics

Output
RGB image

i

RGB image

m Number of layers : K = 40 ﬂ

m Estimation of regularization parameter x0=y

£ £,

_ 3(y) x Softplus(by)

A = £ _
. K O) n(xx) + Softplus(ck)

o 7(xx) : standard deviation of [(Dnxx) " (Dyxk) "]

e Estimation of noise level [Ramadhan et al.,2017], ;(y) = median(|Wgy|)/0.6745

e |Why| : vector gathering the absolute value of the diagonal coefficients of the first level
Haar wavelet decomposition of the blurred image

— iRestNet does not require knowledge of noise level
m Post-processing Ly, [Zhang et al.,2017]

35 64 64
o
&

RN

ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU
+BN +BN +BN +BN +BN +BN +BN

Input

e T
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Dataset
m Training set : 200 RGB images from BSD500 + 1000 images from COCO
m Validation set : 100 validation images from BSD500
m Test sets : 200 test images from BSD500, Flickr30 test set (30 images)
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Numerical experiments

Dataset
m Training set : 200 RGB images from BSD500 + 1000 images from COCO

m Validation set : 100 validation images from BSD500
m Test sets : 200 test images from BSD500, Flickr30 test set (30 images)

Test configurations
® GaussianA : Gaussian kernel with std=1.6, o = 0.008
m GaussianB : Gaussian kernel with std=1.6, o € [0.01, 0.05]
m GaussianC : Gaussian kernel with std=3, o = 0.04
= Motion : motion kernel from [Levin et al.,2009] ¢ = 0.01

m Square : 7 X 7 square kernel, o = 0.01

e I W TGS
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Numerical experiments

Dataset
m Training set : 200 RGB images from BSD500 + 1000 images from COCO
m Validation set : 100 validation images from BSD500
m Test sets : 200 test images from BSD500, Flickr30 test set (30 images)

Test configurations
® GaussianA : Gaussian kernel with std=1.6, o = 0.008
m GaussianB : Gaussian kernel with std=1.6, o € [0.01, 0.05]
m GaussianC : Gaussian kernel with std=3, o = 0.04
= Motion : motion kernel from [Levin et al.,2009] ¢ = 0.01

m Square : 7 X 7 square kernel, o = 0.01

Training
m Loss : Structural Slmilarity Measure (SSIM) [Wang et al., 2004], ADAM optimizer
m Lo, ..., L9 trained individually, L, 0 L39 0 - -+ 0 L3¢ trained end-to-end — low memory

n Implemented with Pytorch using a GPU, ~3-4 days per training

e I W TGS
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Numerical experiments

Competitors

Variational approach
m VAR : solution to Py with projected gradient algorithm, (), &) leading to best SSIM.

Machine learning approaches

m EPLL [Zoran and Weiss, 2011] : Bayesian approach, Gaussian mixture model with learned
parameters, deblurred image = MAP estimate

m MLP [Schuler et al.,2013] : Multi-Layer Perceptron network fed with a pre-deconvolved
image produced by a Wiener deconvolution filter.

Machine learning approaches based on deep unfolding

= IRCNN [Zhang et al.,2017] (require noise level) : empirical algorithm derived from an
augmented Lagrangian formulation and unfolded over 30 iterations, CNN is used as a
denoiser to update the splitting variable.

= PDHG [Meinhardt et al., 2017] : maximum of 30 iterations of a primal dual hybrid gradient
algorithm, proximity operator of the second regularization function replaced by a NN.

= FCNN [J. Zhang et al., 2017] : unfolded algorithm, regularization function learned by a NN.

— MLP, EPLL and IRCNN require knowledge of noise level — for GaussianB use noise standard
deviation estimation given by [Mallat, 1999, Section 11.3.1].

e Iem W WS
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Introduction  Proximal IP method  Proximity operator of the barrier

v/ Higher average SSIM than competitors
v/ Higher SSIM on almost all images

GaussianA  GaussianB  GaussianC  Motion Square

Blurred 0.676 0.526 0.326 0.549 0.544
VAR 0.804 0.723 0.587 0.829  0.756
EPLL [Zoran and Weiss, 2011] 0.800 0.708 0.565 0.839  0.755
MLP [Schuler et al., 2016] 0.821 0.734 0.608 n/a n/a
PDHG [Meinhardt et al., 2017] 0.796 0.716 0.563 n/a n/a
IRCNN [K. Zhang et al., 2017] 0.841 0.768 0.619 0.907 0.834
FCNN [J. Zhang et al., 2017] n/a n/a n/a 0.847 n/a
iRestNet 0.853 0.787 0.641 0.910 0.840
TABLE — SSIM results on the BSD500 test set.
0 o i
3 0 //z(,qﬁ—rv*
3 = 2 2005 "
270.05 JB= st z005 E .
= e z 2 01 A
@ i VAR 7 01 VAR 2 s
2 ol Bty 2 | petiy g 015 —w
@« i —+PDHG @ -0.15 - PDHG @a | ——EPLL
- IRCNN - IRCNN 0.2 - IRCNN
- iRestNet _02\ - —iRestNet n — iRestNet
0 50 100 150 200 "o 50 100 150 200 0 50 100 150 200

Test images Test images Test images

Workshop Jussieu, 2019 28 /35

Corbineau et al.



Proximal IP method  Proximity ope c 2 Proposed archi rk stability ~ Numerical experiments

v/ Short execution time : ~ 1.4 sec per image

v/ Similar performance on a different test set

GaussianA GaussianB GaussianC Motion Square

Blurred 0.723 0.545 0.355 0.590 0.579
VAR 0.857 0.776 0.639 0.869 0.818
EPLL [Zoran and Weiss, 2011]  0.860 0.770 0.616 0.887 0.827
MLP [Schuler et al., 2016] 0.874 0.798 0.668 n/a n/a

PDHG [Meinhardt et al., 2017]  0.853 0.781 0.623 n/a n/a
IRCNN [K. Zhang et al., 2017]  0.885 0.819 0.676  0.930 0.886
FCNN [J. Zhang et al., 2017] n/a n/a n/a 0.890 n/a
iRestNet 0.892 0.833 0.696  0.930 0.886

TABLE — SSIM results on the Flickr30 test set.
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Visual results

v/ Better contrast and more details

VAR : 0.833 EPLL : 0.839

MLP : 0.860 PDHG : 0.772 IRCNN : 0.840 iRestNet : 0.883

FIGURE — Visual results and SSIM obtained on one image from the BSD500 test set degraded with GaussianB.

Corbineau et al.
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Ground-truth Blurred : 0.344 VAR : 0.622 EPLL : 0.553 IRCNN : 0.685
FIGURE — Visual results and SSIM obtained on one image from the BSD500 test set degraded with Square.

IRCNN : 0.906 FCNN : 0.856  iRestNet : 0.909

FIGURE — Visual results and SSIM obtained on one image from the Flickr30 test set degraded with Motion.
Wi, T 00 5175
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Conclusion

m Novel architecture based on an unfolded proximal interior point algorithm
m Allows to apply hard constraints on the image
m Expression and gradient of the proximity operator of the barrier

— Different application (classification, ...)
— When degradation is unkown : blind or semi-blind deconvolution

2019 32 /35
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https://mccorbineau.github.io
https://github.com/mccorbineau/iRestNet

Corbineau et al.
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Conclusion

Thank you'!
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